Landmarks: a New Model for Similarity-based Pattern Querying in Time Series Databases
نویسندگان
چکیده
In this paper we present the Landmark Model, a model for time series that yields new techniques for similarity-based time series pattern querying. The Landmark Model does not follow traditional similarity models that rely on pointwise Euclidean distance. Instead, it leads to Landmark Similarity, a general model of similarity that is consistent with human intuition and episodic memory. By tracking different specific subsets of features of landmarks, we can efficiently compute different Landmark Similarity measures that are invariant under corresponding subsets of six transformations; namely, Shifting, Uniform Amplitude Scaling, Uniform Time Scaling, Uniform Bi-scaling, Time Warping and Non-uniform Amplitude Scaling. A method of identifying features that are invariant under these transformations is proposed. We also discuss a generalized approach for removing noise from raw time series without smoothing out the peaks and bottoms. Beside these new capabilities, our experiments show that Landmark Indexing is considerably fast.
منابع مشابه
Bounded similarity querying for time-series data
We de ne the problem of bounded similarity querying in time-series databases, which generalizes earlier notions of similarity querying. Given a (sub)sequence S, a query sequence Q, lower and upper bounds on shifting and scaling parameters, and a tolerance , S is considered boundedly similar to Q if S can be shifted and scaled within the speci ed bounds to produce a modi ed sequence S whose dist...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملA novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes
The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACM SIGMOD Digital Review
دوره 1 شماره
صفحات -
تاریخ انتشار 1999